Application of ordered nanoporous silica for removal of uranium ions from aqueous solutions.
نویسندگان
چکیده
Ordered nanoporous silica (MSU-H) with high surface area has been utilized as a solid substrate of a surface-modified hybrid sorbent for the application to the removal of U(VI). Carboxymethylated polyethyleneimine (CMPEI) with a strong complexing property has been introduced to the pore surface of MSU-H substrate. CMPEI-modified MSU-H (CMPEI/MSU-H) has been characterized by scanning electron microscopy and nitrogen sorption. In a kinetic experiment for 12.5 ppm U(VI) solution at pH 4.0, 99% U(VI) was removed from solution by the hybrid sorbent within less than 10 min, indicating that the sorption of U(VI) on the CMPEI/MSU-H proceeds very rapidly. It was evident that a U(VI) sorption capacity increased with pH in the range of 2.0 to 4.0. The CMPEI/MSU-H showed a high sorption capacity of 153 mg/g-sorbent at pH 4.0. In particular, the CMPEI/MSU-H showed a significantly high uranium loading stability. Only about 1% U(VI) was released out of CMPEI/MSU-H during 4 months, when the CMPEI/MSU-H was treated with polyacrylic acid.
منابع مشابه
Synthesis of Ethylenediamine-modified Ordered Mesoporous Carbon as a New Nanoporous Adsorbent for Removal of Cu(II) and Pb(II) Ions from Aqueous Media
The mesoporous carbon (CMK-3) functionalized with ethylenediamine (EDA) has been synthesized (CMK-3-EDA) and applied as a new mesoporous adsorbent for removal of Cu(II) and Pb(II) cations from aqueous solutions. Nitrogen adsorption–desorption measurements (BET) show that surface area, pore size and pore volume of CMK-3 were significantly changed after amine modification. The BET surface area an...
متن کاملApplication of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System
Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong p...
متن کاملAqueous Cadmium Ions Removal by Adsorption on APTMS Grafted Mesoporous Silica MCM-41 in Batch and Fixed Bed Column Processes
Highly ordered mesoporous MCM-41silica with hexagonal structure was synthesized using extracted amorphous silica from sedge (Carex riparia) ash. Obtained mesoporous materials functionalized by 3-(Aminopropyl) trimethoxysilane (APTMS) and their structures characterized by means of X-ray diffraction (XRD), nitrogen adsorption-desorption, thermogravimetric analysis (TGA) and Fourier transform infr...
متن کاملApplication of FFT Cyclic Voltammetry for Monitoring Removal of Mercury Ions from Aqueous Environment using New Adsorbent based Modified Mesoporous Silica (SBA–15)
As the electrochemical method, the Fast Fourier Transform (FFT) Stripping Cyclic Voltammetry detection method was designed for measurement and monitoring of adsorbed mercury ions by new modified adsorbent based on mesoporous silica as a new adsorbent. In this respect, SBA-15 as mesoporous silica and 1, 3, 5 Trithiane as effective modifier ligand were chosen, and the modification process was car...
متن کاملTh(IV)/U(VI) Sorption on Modified SBA–15 Mesoporous Materials in Fixed–Bed Column
The sorption of thorium and uranium ions by functionalized SBA–15 mesoporous silica materials with Schiff base ligating groups N–propylsalicylaldimine (SBA/SA) and ethylenediaminepropylesalicylaldimine (SBA/EnSA) from aqueous solution was investigated in fixed-bed column method. The TEMPeffect of pH, sample solution volume, and the column design parameters such as sample and eluent flow rat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nanoscience and nanotechnology
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2010